

 Home - Buy - Site Guide - motorola.com

Search GO

Computer
Group

Products
Solution Services
About Us
Contact Us
Industry Focus
 Telecom
 Defense-Aerospace
 Industrial Automation
 Medical
 More Industries
Registered Users
 Channels
 Customer Resource
 Center (CRC)
 Partners
 Update Profile

Online Services
[News] [Real -Time Software Support (RTSS)]

Contents

Description
Items Supported and NOT Supported
Contents of BSP
Prerequisites
Installation Instructions
Known Limitations
Additional Information
Other Patches
Downloads

Description
This release is the 0.4 version of the BSP for the Motorola MVME5500 board on the Tornado 2.2.1 release.
It contains a complete copy of the Motorola MVME5500 BSP. The target.nr file has been updated to include
configuration specific information essential to the operation of the MVME5500 BSP. Please review the BSP
documentation before using the BSP.

Items Supported and NOT Supported

Contents of BSP
The BSP tar image that you downloaded is named MVME5500_0.4.tar.gz. Extract this file into a temporary
area. It contains the following files:

README.MVME5500

MVME5500 Early Access VxWorks BSP

Supported NOT Supported
MPC7455/MPC7457 Processor

This support includes any errata work -arounds required.
L1, L2, and L3 Cache
L3 private memory
MPx bus mode
MMU (Memory Management Unit)
Decrementer driver
512GB to 1GB SDRAM with ECC
SPD (Serial Presence Detect) SROMs
GT -64260 ASIC System Controller

Host PCI bridge functions
Memory controller
I2C interface
Device bus
Interrupt controller
DMA driver
Timer/Counter as Auxiliary Clock

Tundra Universe 2
PCI-VME bridge
DMA
VxWorks Shared Memory

Extended VME memory model
VPD (Vital Product Data)
Flash memory

Up to 64MB soldered (flash0)
8MB socketed flash (flash1)
Boot image in either bank

MK48T37
32KB NVRAM RTC
Alarm Clock
Failsafe Timer

Serial Console (16550) Driver
GT -64260 Integrated Ethernet Driver

(wancom)
Wind River Gigabit Ethernet Driver

(gei)
PCI Auto Configuration

PMC Module Configuriation
IPMC module

SCSI
Serial

PMCspan
Onboard fail LED

Abort Switch
TFFS (True Flash File System)
VME

DMA controller in linked list mode

Page 1 of 16Motorola Computer Group Online Services

10/13/2003http://mcg.motorola.com/secure/oem/OnlineServices.cfm?PageID=46&ProductFamily=MVME5500&FileName=mvme5500.html&...

MVME5500_BSP0.4.tar

The MVME5500_BSP0.4.tar file contains the following directories and/or files:

target/config/mv5500/
Motorola.lic
WRS.lic

The first item is the directory for the MVME5500 BSP from Motorola. Motorola.lic and WRS.lic are the
license files that govern this release of the BSP.
Prerequisites
The following items must be installed BEFORE installing the BSP:
Wind River's "Tornado 2.2.1/VxWorks 5.5.1 for PowerPC"
Wind River's "BSPs/Drivers for VxWorks 5.5.1: PowerPC"

Installation Instructions
The BSP is packaged as a "tar file within a tar file". The outer tar file contains two files: a
README.MVME5500 file with instructions for installing the BSP, and another tar file with the BSP itself.
Winzip can be used to extract the files from the downloaded tar file on a Windows 95/98 or Windows NT
system.

Installation Instructions for Unix

1. Install Tornado 2.2.1 support from Wind River.
2. Make sure the appropriate environment variables are set according to the VxWorks Tornado User's Guide.
3. Install the files contained in this BSP by performing the following:

a. Change to your VxWorks root directory.
If you view the directory you will see the " target " directory among others.

2. Uncompress and untar the downloaded file.

gunzip MVME5500_0.4.tar.gz
tar -xvf MVME5500_0.4.tar
tar -xvf MVME5500_BSP0.4.tar

4. Read the file target/config/mv5500/README for initial BSP information.
5. Rebuild the bootrom and the kernel (instructions in "target.nr"). Note that a "boot.bin", "vxWorks.st" and "vxWorks" binary image

are included as part of the BSP. These binaries have been built with the default "config.h" and can be immediately used on your
board.

6. Make sure you FLASH the bootrom binary before using the kernel.

Installation Instructions for Microsoft Windows 95/98/NT

1. Make sure the Tornado package from Wind River is installed.
2. Open the winzip application.
3. Use the "OPEN" winzip action to find and open the downloaded file.
4. Once the downloaded tar file is opened, the Winzip window will display the names of the README and BSP tar files.
5. To view the README file contents, select it and choose the "VIEW" winzip action.
6. To extract the files, select the README and BSP tar files and execute the "EXTRACT" winzip action. You will be prompted to

choose a directory into which the extracted files will be stored. This should be set to the Tornado installation directory (default is
c:\Tornado; if you view the directory you will see the "target" directory among others). After providing the directory information,
choose the "Extract" option in the "Extract" window. The extracted files will be written into the directory. (Note: WinZip may be so
fast that it seems nothing happened.)

7. Use the "OPEN" winzip action to find and open the BSP tar file. This will be in the Tornado installation directory that you
previously entered.

8. Once the tar file is opened, the Winzip window will display the names of the files which are contained in the archive. On the right
side of the list, the destination path for each file will be displayed.

9. To install the BSP, select the files and execute the "EXTRACT" winzip action. You will be prompted to choose a directory into
which the extracted files will be stored. This should be set to the Tornado installation directory. After providing the directory
information, choose the "Extract" option in the "Extract" window. The extracted files will be written into the destination directories.

Known Limitations
None.

Additional Information

1. Socketed vs. Soldered ROMs
The J8 jumper governs which flash -ROM runs, socketed (flash1) or soldered (flash0). MOTLoad has been programmed into the socketed (flash1) flash -ROM
and a vxWorks bootrom ("boot.bin") can be programmed into the soldered (flash0) flash -ROM. See the reference pages below under "ROM considerations" for
an explanation of how to do this. The board is shipped with the J8 jumper set to enable MOTLoad.

2. How to Flash the Bootrom
An explanation of how to do this is contained in the reference pages below in the section titled: "Flashing the Boot ROM Using Motorola MOTLoad".

 --

Page 2 of 16Motorola Computer Group Online Services

10/13/2003http://mcg.motorola.com/secure/oem/OnlineServices.cfm?PageID=46&ProductFamily=MVME5500&FileName=mvme5500.html&...

 VxWorks BSP Reference : mv5500

MVME5500

NAME

 MVME5500 - Motorola MVME5500

INTRODUCTION

 This manual entry provides board-specific information necessary to
 run VxWorks. Before using a board with VxWorks, verify that the
 board runs in the factory configuration by using vendor-supplied
 ROMs and jumper settings and checking the RS-232 connection. This
 BSP is compatible with Wind River's Tornado 2.2.1 development
 environment.

 This BSP encompasses the MVME5500 Single Board Computer. The
 MVME5500 board is a VMEbus single-slot Computer based on the
 PowerPC MPC7455/MPC7457 processor with integrated L1 and L2 cache
 as well as backside L3 cache, and the Galileo GT-64260B host
 bridge with dual PCI Interface and Memory Controller. On-board
 payload includes two PMC slots, two SDRAM banks (up to 1GB of
 memory), an expansion connector for two additional banks of SDRAM
 (for an additional 1GB of memory), 8MB of socketed Boot FLASH ROM
 (also referred to as "flash1" or "bank B"), up to 64MB of on-board
 soldered flash (also referred to as "flash0" or "bank A"), one
 10/100/1000 Ethernet port, one 10/100 Ethernet port, two RS232
 serial ports, and 32KB NVRAM/Real-Time Clock/Failsafe Timer and
 Universe 2.0 PCI to VME bridge. The MVME5500 supports the IPMC761
 PMC card for MVME761 I/O functionality and the IPMC712 PMC card
 for MVME712 I/O functionality.

Boot ROMS

 The MVME5500 supports two banks of FLASH memory. Flash0 (32
 MBytes) consists of two Intel StrataFlash 3.3 volt devices
 configured to operate in 16-bit mode and is soldered onboard.
 Flash1 consists of four 56-pin TSSOP sockets which will be
 populated with 8MB of Flash memory using 16-bit wide Intel
 StrataFlash devices. Either bank can be used as the boot bank,
 which will be jumper selectable. The jumper effectively swaps the
 chip selects (GT-64260) of the two FLASH banks. When the jumper is
 placed on pins 1 and 2 bank A becomes the boot bank. When the
 jumper is placed on pins 2 and 3 bank B becomes the boot bank.
 Bank B contains Motorola's MOTLoad firmware.

 Boot Line Parameters
 To load VxWorks, and for more information, follow the
 instructions in the Tornado User's Guide: Getting Started.

Jumpers

 The following jumpers are relevant to VxWorks configuration:

 Jumper Function Description
 --
 J8 Boot ROM controller Across pins 1 and 2 to select
 the soldered FLASH (flash0).
 Across pins 2 and 3 to select
 the socketed FLASH (flash1).
 J27 System controller Across pins 1 and 2 for no
 selection SCON.
 Across pins 2 and 3 for
 auto-SCON.
 Not installed for "always
 SCON".
 J28 PMC/IPMC Across pins 1 and 2 for PMC
 mode.
 Across pins 2 and 3 for IPMC761
 mode.
 Across pins 1 and 2 for IPMC712
 mode.
 J32 PMC/IPMC Across pins 1 and 2 for PMC
 mode.
 Across pins 2 and 3 for IPMC761
 mode.
 Across pins 2 and 3 for IPMC712
 mode.
 J19 Bus mode select Across pins 1 and 2 for 60x
 mode
 Across pins 2 and 3 for MPX

Page 3 of 16Motorola Computer Group Online Services

10/13/2003http://mcg.motorola.com/secure/oem/OnlineServices.cfm?PageID=46&ProductFamily=MVME5500&FileName=mvme5500.html&...

 mode
 J17 SROM initialization Across pins 1 and 2 for
 GT-64260 SROM initialization.
 Across pins 2 and 3 for no
 GT-64260 SROM initialization.
 J6,J100,J7,J101 10/100 Ethernet Across pins 1 and 2 to route
 10/100 ethernet to front panel.
 Across pins 2 and 3 to route
 10/100 ethernet to MVME761.
 J97,J34,J98,J99 10/100 Ethernet Leave pins 1 and 2 unjumpered
 to route 10/100 ethernet to
 front panel.
 Across pins 1 and 2 to route
 10/100 ethernet to MVME761.

 For jumper configuration details, see the board diagram at the end
 of this entry and in the hardware manual.

FEATURES

 The following subsections list all supported and unsupported
 features, as well as any feature interaction.

Supported Features

 The following features of the MVME5500 board family are supported:

 Feature Description
 --
 Processors MPC7455/MPC7457
 Up to 100MHz bus clock
 L1, L2 and L3 cache(including Private Memory)
 MMU (Memory Management Unit)
 Decrementer
 DRAM Up to 2GB SDRAM
 SPD (Serial Presence Detect) SROMs
 ECC (Error Checking and Correcting)
 GT-64260 Host Bridge functions
 Memory Controller
 I2C interface
 Interrupt controller
 Device bus
 DMA functionality
 Internal timer as Auxiliary Clock
 Bus Mode MPX and 60x bus mode is supported
 Tundra Universe 2 PCI-VME bridge
 VME Interface:
 32-bit address, 32-bit data PCI bus interface
 A32/A24/A16, D32/D16/D08 master and slave
 programmable interrupter and interrupt handler
 full system controller function
 eight location monitor/signal registers
 DMA controller (in direct mode only).
 VPD Vital Product Data
 FLASH Up to 64MB Flash (flash0 or BANK A, 16-bit)
 8MB Flash (flash1 or BANK B)
 Boot image in either bank
 MK48T37 32KB NVRAM
 Real-time clock
 Alarm Clock
 Failsafe Timer
 Peripherals Two async serial debug ports;
 One 10/100 Mb Ethernet interface;
 One 10/100/1000 MB Ethernet interface;
 PCI Interface 64-bit PCI/PCI-X; complies with PCI Local Bus
 Specification,
 Revision 2.1
 Fail LED Extinguish after board initialization
 IPMC761 Interface Two additional asynchronous serial ports.
 Two additional asynchronous/synchronous serial
 ports.
 SCSI interface.

Unsupported Features

 The following features of the MVME5500 board family are not
 supported:

 Feature Description
 --
 VME Interface DMA controller in linked list mode (only direct mode is
 supported).

Page 4 of 16Motorola Computer Group Online Services

10/13/2003http://mcg.motorola.com/secure/oem/OnlineServices.cfm?PageID=46&ProductFamily=MVME5500&FileName=mvme5500.html&...

 TFFS True File Flash System for the Intel StrataFlash
 Miscellaneous ABORT switch

Feature Interactions

 None known.

HARDWARE DETAILS

 This section details device drivers and board hardware elements.

 Memory ECC Protection
 This BSP supports ECC memory which is enabled by default. To
 disable ECC, #undef INCLUDE_ECC in config.h.

Devices

 The device drivers, libraries and support routines included with
 this BSP are:

 byteNvRam: byte-oriented generic non-volatile RAM driver.
 i8250Sio: Intel 8250 UART driver (debug port).
 m48t37: M48T37 Timekeeper SRAM device driver.
 sysMv64260AuxClk: GT-64260 auxiliary clock driver.
 sysMv64260Dma: GT-64260 DMA driver.
 sysMv64260I2c: GT-64260 I2C serial EEPROM driver.
 sysMv64260Int: GT-64260 interrupt controller driver.
 sysMv64260Phb: GT-64260 Host Bridge support.
 pciAutoConfigLib: PCI auto-configuration library.
 pciConfigLib: PCI configuration library.
 pciConfigShow: Show routines of PCI bus library.
 ppcDecTimer: PowerPC decrementer timer driver (system
 clock).
 Smc: GT-64260 System Memory Controller support.
 sysMv64260SmcShow: System Memory Controller configuration Show
 routine.
 sysCache: MPC745x L1, L2 and L3 cache support.
 sysFailSafe: STMicroelectronics Watchdog/Failsafe Timer
 driver.
 sysMotVpd: Vital Product Data support.
 sysMotVpdShow: Vital Product Data Show routines.
 sysRtc: Real-Time clock and alarm clock support
 routines.
 universe: Tundra Universe chip VME-to-PCI interface
 driver.
 wancomEnd.obj: 10baseT/100baseTX GT-64260 ethernet driver.
 ns8730xSuperIo(IPMC): Super I/O controller driver.
 z8530Sio(IPMC): Zilog 8536 UART driver.
 sym895Lib(IPMC): SYM53C895A SCSI driver.

BSP CONFIGURATION

 Most BSP configuration values are taken from on-board Vital
 Product Data (VPD) and Serial Presence Detect (SPD) serial
 EEPROMs. If invalid SPD is encountered (as determined by incorrect
 checksum), the memory controller is programmed with default values
 allowing access to 256MB of DRAM. Executing sysMv64260SpdShow()
 at the VxWorks prompt will reveal if the SPD data is valid or not.

PCI Dynamic Allocation Spaces

 PCIx_MSTR_IO_SIZE, PCIx_MSTR_MEMIO_SIZE, PCIx_MSTR_MEM_SIZE, and
 ISA_MSTR_IO_SIZE (where "x" is "0" or "1" relating to GT-64260 bus
 0.0 and 1.0) control the sizes of the available PCI address
 spaces. There is one set of definitions for each bus. The windows
 defined by these parameters must be large enough to accommodate
 all of the PCI memory and I/O space requests found during PCI
 autoconfiguration. If they are not, some devices will not be
 autoconfigured. These definitions can be found in config.h.

 NOTE: PCI auto-configuration is performed by the bootroms. Any
 changes to
 PCIx_MSTR_IO_SIZE, PCIx_MSTR_MEMIO_SIZE, PCIx_MSTR_MEM_SIZE, or
 ISA_MSTR_IO_SIZE (where "x" is "0" or "1") requires the
 creation of a new
 bootrom image.

Memory Maps

 Diagrams of the CPU-PCI, PCI-VME and VME-PCI memory mapping are
 presented in config.h.

Page 5 of 16Motorola Computer Group Online Services

10/13/2003http://mcg.motorola.com/secure/oem/OnlineServices.cfm?PageID=46&ProductFamily=MVME5500&FileName=mvme5500.html&...

 On-board RAM always appears at address 0x00000000 locally.

 Dynamic memory sizing is supported. By default, LOCAL_MEM_AUTOSIZE
 is defined so memory is auto-sized at hardware initialization
 time. If auto-sizing is not selected, LOCAL_MEM_SIZE must be set
 to the actual size of DRAM memory available on the board to ensure
 all memory is available. The default fixed RAM size is set to 32MB
 (see LOCAL_MEM_SIZE in config.h).

 Note that LOCAL_MEM_SIZE only controls the amount of memory mapped
 by the MMU. It does not control the amount of memory detected and
 configured by the Bootrom. The amount of physical memory indicated
 by the Serial Presence Detect data determines the memory
 controller configuration and, if enabled, the ECC initialization
 range.

L3 Cache Private Memory Support

 The BSP provides support for L3 cache private memory. This support
 is not defined by default. To include private memory support
 change #undef INCLUDE_CACHE_L3_PM to #define INCLUDE_CACHE_L3_PM
 in config.h.

 The private memory can be configured and initialized with the
 routine sysL3CachePmEnable(size) from application code, or from
 the kernel prompt. The size parameter indicates the desired
 private memory size, 0x100000(1MB) and 0x200000(2MB) are the only
 valid parameters. Note that the private memory must not be enabled
 and initialized until the MMU has been initialized.

 The private memory support can be disabled by calling the routine
 sysL3CachePmDisable().

 Also, the routines sysL3CacheFlushDisable() and
 sysL3CacheInvEnable() have been designed to preserve the private
 memory configuration.

Shared Memory

 On all boards, shared memory across the backplane can also be used
 as a network interface. The name of the shared memory is sm. The
 BSP can be configured for shared memory support by #define'ing
 INCLUDE_SM_NET in config.h.

 Shared memory network communications requires a signaling method
 and a method of mutually exclusive memory resource access.
 Signaling can be done using software polling or interrupts. By
 default, mailbox interrupts are used and SM_INT_TYPE is set to
 SM_INT_MAILBOX_1. To use polling, #define SM_INT_TYPE as
 SM_INT_NONE.

 There are master and slave windows into VME address space to
 access the VME mailbox registers so that each CPU can send and
 receive shared memory interrupts using single-byte mailboxes. The
 windows map a 4KB region in A32 space at address 0xFB000000 +
 (0x1000 * CPU #) into the Universe chip registers. This
 configuration allows one processor to generate a SIG1 interrupt in
 another processor by accessing the other processor's mailbox
 register and setting the SIG1 bit. Each CPU has a master window
 covering the A32 addresses 0xFB000000 through 0xFB00ffff
 representing CPU numbers 0 through 15. Each CPU's slave window
 maps the appropriate address for that CPU to the Universe chip's
 register set.

 Note that the Universe II location monitors are no longer used for
 shared memory interrupt notification. All four Universe II
 location monitors are available for user applications and have
 been left in their default state (disabled and unmapped).

 Shared memory resource mutual exclusion (spin lock) is implemented
 using test-and-set (TAS) and clear operations on byte-sized
 semaphores. The #define for SM_TAS_TYPE is set to SM_TAS_HARD
 inside of "mv5500A.h", a requirement if VxMP is used. Hardware TAS
 and clear operations are performed by the sysBusTas() and
 sysBusTasClear() routines, respectively, and invoke pseudo-atomic
 operations.

 True atomic operations are those which cannot be preempted at the
 hardware level and appear on a bus as a single-cycle instruction.
 Pseudo-atomic operations are composed of multiple instruction
 cycles executed on a bus that is locked (owned) by the processor
 executing the instructions. This is the method used when the

Page 6 of 16Motorola Computer Group Online Services

10/13/2003http://mcg.motorola.com/secure/oem/OnlineServices.cfm?PageID=46&ProductFamily=MVME5500&FileName=mvme5500.html&...

 MVME5500 hosts the shared memory pool (SM_OFF_BOARD set to FALSE).

 The routine sysBusTas() performs pseudo-atomic TAS operations by
 disabling interrupts (to prevent deadlocks) and locking ownership
 of the VMEbus. This routine waits up to 10 microseconds to lock
 the bus. If bus ownership has not been achieved at the end of this
 period, the routine returns FALSE, the same as it would if the
 semaphore had already been set.

 The GT-642260 on the MVME5500 is not capable of translating a VME
 RMW bus cycle into an onboard atomic operation. Thus if the
 MVME5500 is used in a shared memory configuration and is compiled
 with SM_OFF_BOARD set to FALSE (indicating that the shared memory
 pool is onboard), then ANY_BRDS_IN_CHASSIS_NOT_RMW must be
 #define'd.

 When using the MVME5500 in a shared memory configuration with
 another type of VME board such as the MVME5100. The following
 slight modification must be made to the last few lines of the
 MVME5100's sysBusTas() function:

 #endif /* ANY_BRDS_IN_CHASSIS_NOT_RMW */
 }
 else /* Slave node */
 {

 #if 0
 /* A board with the UNIVERSE_II can generate a VMEbus RMW */

 return (sysVmeRmwTas(adrs));
 #else
 return (sysVmeVownTas(adrs));
 #endif
 }
 }

 The effect is to invoke sysVmeVownTas() instead of
 sysVmeRmwTas().

Interrupts

 The system interrupt vector table has 256 entries. Vectors numbers
 are grouped according to the following table:

 Vector# Assigned to
 --
 0x00 - 0x1f GT-64260 Main Cause (low) interrupts
 0x20 - 0x3f GT-64260 Main Cause (high) interrupts
 0x40 - 0x4f GT-64260 GPP interrupts
 0x50 - 0x5f Universe related interrupts.
 0x60 - 0xbf Reserved - currently unassigned.
 0xc0 - 0xff Available for user application software.

 As the above table shows, the BSP uses interrupt vectors (numbers)
 beginning with 0 and proceeding to numerically higher values.
 Interrupts such as VME bus interrupts which can be assigned a
 value by the user should be confined to numbers in the range 0xc0
 thru 0xff to avoid conflict with system required interrupts. It is
 suggested that application software avoid the use of 0xff as an
 interrupt vector. Although a legal number, 0xff often is
 associated a nonresponding PCI read and may cause confusion when
 debugging.

 The interrupt number is numerically equivalent to interrupt
 vector.

 The GT-64260 interrupt controller does not directly support
 interrupt priorities. Software configuration can be performed
 however, which affects the order in which interrupts sources are
 checked upon occurrence of an external processor interrupt. The
 #define for ICI_MAIN_INT_PRIORITIES (in config.h) specifies the
 order in which GT-64260 main interrupt cause bits are checked.

 In addition to the interrupts associated with the GT-64260 main
 interrupt cause register, the GT-64260 contains a 32-bit multi
 purpose port (MPP). The MPP pins can be configured as external
 interrupt pins through association with the General Purpose Pins
 (GPP). In addition some of the MPP pins are configured for control
 and status purposes. The table below summarizes the MPP pin
 assignments.

 Pin# Vector# I/O Polarity Source

Page 7 of 16Motorola Computer Group Online Services

10/13/2003http://mcg.motorola.com/secure/oem/OnlineServices.cfm?PageID=46&ProductFamily=MVME5500&FileName=mvme5500.html&...

 0 0x40 I High COM0/COM1
 1 0x41 I High Unused
 2 0x42 I Low Abort interrupt
 3 0x43 I Low RTC & thermostat interrupts (ORed)
 4 NA O Low Unused
 5 NA O Low Unused
 6 0x46 I Low Watchdog WDNMI# interrupt
 7 0x47 I Low LXT971A interrupt (10/100Mbit PHY)
 8 0x48 I Low PMC 1 INTA#
 9 0x49 I Low PMC 1 INTB#
 10 0x4a I Low PMC 1 INTC#
 11 0x4b I Low PMC 1 INTD#/IPMC INT
 12 0x4c I Low Universe/VME interrupt VLINT0
 13 0x4d I Low Universe/VME interrupt VLINT1
 14 0x4e I Low Universe/VME interrupt VLINT2
 15 0x4f I Low Universe/VME interrupt VLINT3
 16 0x50 I Low PMC 2 INTA#
 17 0x51 I Low PMC 2 INTB#
 18 0x52 I Low PMC 2 INTC#
 19 0x53 I Low PMC 2 INTD#
 20 0x54 I Low Intel 82544 interrupt
 21 0x55 I Low Unused
 22 0x56 I Low Unused
 23 0x57 I Low Unused
 24 0x58 I Low Watchdog WDNMI#
 25 0x59 I Low Watchdog WDE#
 26 0x5a O High GT-64260A SROM init active output
 27 0x5b I Low Unused
 28 0x5c O Low Unused
 29 0x5d O Low Unused
 30 0x5e I Low Unused
 31 0x5f I Low Unused

 For further details, refer to the appropriate board's reference
 guide.

 Each "interrupt" Pin# from the above table is associated with a
 bit in the local GPP interrupt cause register. In addition, one of
 the four "main interrupt cause low" bits (24, 25, 26, or 27) is
 set indicating that a GPP related interrupt has occurred. When one
 of these four main interrupt cause bits indicates a GPP interrupt,
 the interrupt handler will expect to see one or more of the
 interrupt bits from the above GPP set to be active. The order in
 which the GPP interrupt set is checked is governed by the #define
 GPP_LOCAL_INT_PRIORITIES which is found in config.h.

PCI Auto-Configuration

 To simplify the addition of PCI-based add-in cards, the BSP
 provides a PCI auto-configuration library.

 The auto-configuration is called from sysHwInit to discover and
 configure the installed PCI devices and bridges. PCI
 auto-configuration is only called one time - during bootrom
 initialization. Device configuration includes the following PCI
 information:

 Base Address Registers (BARs)
 Space in the address map is dynamically allocated to each
 valid BAR detected. Allocation pools are maintained for the
 following PCI address spaces:

 16-Bit PCI I/O

 32-Bit PCI I/O

 PCI Memory I/O (non-prefetchable memory)

 PCI Memory (pre-fetchable memory)

 Interrupt Routing
 The correct interrupt vector number is placed in the intLine
 register of the device's PCI header. To connect to the
 device's interrupt, use the VxWorks intConnect() function
 with the value read from intLine.

 PCI Header Completion
 The PCI auto-configuration library fills in the remainder of
 the PCI header as follows:

 Cache Line Size = _CACHE_ALIGN_SIZE/4

Page 8 of 16Motorola Computer Group Online Services

10/13/2003http://mcg.motorola.com/secure/oem/OnlineServices.cfm?PageID=46&ProductFamily=MVME5500&FileName=mvme5500.html&...

 Latency Timer = PCI_LAT_TIMER

 Command Register = I/O enabled, Memory enabled and Bus Master
 enabled.

IPMC Devices

 Note that the hardware and BSP must match in regards to the IPMC
 module. Do not attempt to define IPMC features without installing
 an IPMC module. IPMC features should be defined when an IPMC is
 installed. Jumpers J28 and J32 must be configured for the proper
 IPMC mode as well.

Serial Configuration

 The MVME5500's two asynchronous serial interfaces are provided by
 the TL16C550C Universal Asynchronous Receiver/Transmitters (UARTs)
 interfaced to the GT-64260 Device Bus. COM0 is routed to a
 front-panel RJ45 connector. COM1 is interfaced to an on-board
 9-pin connector. An optional IPMC transition module will add four
 additional interfaces available through the rear panel transition
 board. By default COM2 and COM3 are defined as the Super I/O
 serial ports and COM4 and COM5 are the Z8536/Z85230 serial ports.

 By default, the serial port is configured as asynchronous, 9600
 baud, with 1 start bit, 8 data bits, 1 stop bit, no parity, and no
 hardware or software handshake. Hardware handshake using RTS/CTS
 is a supported option.

SCSI Configuration

 SCSI is implemented via the IPMC module. To include SCSI support
 change #undef INCLUDE_IPMC, in config.h, to #define INCLUDE_IPMC.

 In order for the SYM53C895A to perform to its full potential - of
 wide ultra2 SCSI - the driver needs to be configured using the
 routine scsiTargetOptionsSet(). The following is an example
 showing how to configure the driver, the code would be added to
 sysScsiConfig() in sysScsi.c:

 scsiId = SCSI_SET_OPT_ALL_TARGETS;
 which = (SCSI_SET_OPT_XFER_PARAMS | SCSI_SET_OPT_WIDE_PARAMS);

 options.minPeriod = 6;
 options.maxOffset = 255;
 options.xferWidth = 1;

 if (scsiTargetOptionsSet (pSysScsiCtrl, scsiId, &options, which)
 == ERROR)
 {
 printf ("Could not set target option parameters\n");
 return (ERROR);
 }

 In order for sysScsiConfig() to execute during initialization
 #define SCSI_AUTO_CONFIG, in config.h, must be changed to #undef
 SCSI_AUTO_CONFIG, and #undef SYS_SCSI_CONFIG must be changed to
 #define SYS_SCSI_CONFIG.

GT-64260 DMA Configuration

 To enable DMA support using the GT-64260, change the #undef
 INCLUDE_MV64260_DMA in config.h to #define. The functions
 specified in sysDma.h and sysDma.c should be used to develop
 applications that are DMA device independent. Specific details
 about the GT-64260 DMA functions are contained in mv64260Dma.h and
 sysMv64260Dma.c. All eight DMA channels are supported in both
 direct mode and chain mode. The header files "mv64260Dma.h" and
 "sysDma.h" contain #define's which may be useful to application
 code which uses the DMA functions. It is suggested that these
 files be #include'd by the application code.

 GT-64260 DMA snooping is turned off by default to achieve the
 optimal DMA speed. Be aware that turning off IDMA snooping will
 result in disabling snoop transactions even in the cache coherency
 regions. Define IDMA_SNOOP_ON in config.h if snoop transactions
 are desired.

NOTE

 When using IDMA chain mode, be sure that the chained descriptors

Page 9 of 16Motorola Computer Group Online Services

10/13/2003http://mcg.motorola.com/secure/oem/OnlineServices.cfm?PageID=46&ProductFamily=MVME5500&FileName=mvme5500.html&...

 are stored in Little Endian mode in memory. The VxWorks LONGSWAP
 macro can be used to facilitate the creation of Little Endian
 descriptors.

Universe/VME DMA Support

 DMA support is implemented as a synchronous "VxWorks driver", that
 is the calling task will be blocked in an interruptable polling
 loop until the DMA transfer has terminated. To keep this driver as
 simple as possible, only direct-mode operations will be
 implemented, that is, linked-list mode will not be supported.

 This driver is strictly non-sharable; however, it contains no
 guards to prevent multiple tasks from calling it simultaneously.
 It assumes that the application layer will provide atomic access
 to this driver through the use of a semaphore or similar guards.

 As a precaution, it is recommended by the Tundra User's Manual
 that the calling task set up a background timer to prevent an
 infinite wait caused by a system problem. Also, tasks transferring
 large blocks of data should lower their priority level to allow
 other tasks to run, and tasks transferring small blocks of data
 should use bcopy() instead of calling this driver.

Network Configuration

 The GT-64260 provides one 10/100 full duplex ethernet port. A
 second gigabit ethernet port is provided by the Intel 82544
 controller. Each port is accessed by front panel RJ45 connectors.
 INCLUDE_GEI_END is #define'd by default, causing the Intel 82544
 gigabit ethernet port (gei0) to be instantiated and initialized.
 To make the GT-64260 ethernet port available, INCLUDE_WANCOM_END
 must be changed from #undef to #define.

 If INCLUDE_NETWORK, INCLUDE_END, and INCLUDE_WANCOM_END are all
 #define'd then "wancomEnd.obj" must be included as part of the
 MACH_EXTRA list in the Makefile (remove the "#" in front of
 "wancomEnd.obj"). If any of the above are not #define'd, then
 "wancomEnd.obj" must be removed from the MACH_EXTRA list. Failure
 to follow this will result in build errors.

 The Ethernet driver automatically senses and configures the port
 as 10baseT, 100baseT, or 1000baseT (if appropriate).

VME Access

 VME access windows are documented in the memory map inside of
 config.h.

 VMEbus accesses can be classified as either master or slave. A
 master access is one in which the accessing processor has bus
 mastership (it owns the bus) and is addressing resources on
 another VME board (the slave board). The master addresses the
 off-board resources through a memory mapping mechanism which
 assigns portions of the local address space to the various VME
 address spaces. These local memory regions are windows onto the
 VMEbus. Each window is individually configured with a set of base
 addresses -- one for the local bus, the other for the VMEbus --
 and a window size.

 A slave access is one in which slave VME processors allow access
 to their resources from the various VME address spaces through
 slave windows.

 The normal VxWorks default is to enable the slave access windows
 only on the VxWorks node which is configured as processor zero in
 the bootrom parameter list. Otherwise, slave accesses are normally
 not permitted.

 The default configuration for processor number zero maps all local
 memory onto VME A32. There are no A24 or A16 slave windows.

 There is no support for the A64/D64 VME extensions.

 To disable any VME master or slave window, just set the
 appropriate VME_Axx_xxx_SIZE macro (in config.h) to 0.

NOTE

 Only the macros in config.h are considered user options. Macros in
 mv5500A.h or mv5500B.h should not be changed by the user.

Page 10 of 16Motorola Computer Group Online Services

10/13/2003http://mcg.motorola.com/secure/oem/OnlineServices.cfm?PageID=46&ProductFamily=MVME5500&FileName=mvme5500.html&...

Failsafe Timer

NOTE

 The RTC (Real-Time clock) must be running in order to use the
 VxWorks sysFailsafe functions. If the timer is not running it can
 be set using the "set" command inside of MOTLoad. See the MOTLoad
 "help set" output to determine the syntax of this command.

 Support for a failsafe (i.e. watchdog) timer is provided. The
 failsafe timer is implemented with the M48T37Y Timekeeper SRAM.
 This support is not part of the standard VxWorks watchdog library,
 wdLib. Failsafe timer expiration can be reported via a maskable
 interrupt or via a board reset event. The timeout lengths range
 from 0 (disable) to 31 seconds.

 Failsafe timer support can be included in the BSP by defining
 INCLUDE_FAILSAFE in config.h. This support by default is excluded.
 There is only one failsafe timer on the board, so only one
 failsafe timer can be established at any given time.

 The failsafe timer is disabled at power-up and after a reset. The
 failsafe timer support routines are defined in sysFailsafe.c.

 In order to use the failsafe timer, the user will need to first
 call sysFailsafeSet(). The routine takes as parameters the number
 of seconds until expiration and whether or not to generate a board
 reset upon expiration. If reset is set to FALSE, an interrupt
 occurs, if reset is set to TRUE, a board reset occurs. Passing a
 value of 0 for seconds will disable the failsafe timer. Once the
 timer has been set, subsequent calls to sysFailsafeSet() will
 extend the timer for the specified number of seconds.

 A call to sysFailsafeCausedReset() will determine whether the
 failsafe timer caused the last board reset. This information will
 be lost if a call to sysAlarmSet() is made prior to calling
 sysFailsafeCausedReset().

 A call to sysFailsafeCancel() will disable the failsafe timer.
 The current failsafe timer settings can be retrieved with a call
 to sysFailsafeGet(). The current failsafe timer settings can be
 displayed with a call to sysFailsafeShow(), this displays the
 current settings not the number of seconds until timer expiration.
 The routine sysFailsafeIntr() is the failsafe timer interrupt
 handler. In order to define your own interrupt handler, simply
 edit this routine.

Real-Time Clock and Alarm Clock

 Support for a real-time clock and an alarm clock are provided. The
 real-time and alarm clocks are implemented with the M48T37Y
 Timekeeper SRAM.

 Real-time and alarm clock support are included in the BSP by
 defining INCLUDE_RTC in config.h. This support by default is
 excluded.

 When the real-time clock information matches the alarm clock
 settings an interrupt will be generated.

 Once set, the alarm clock will retain its settings upon a board
 reset. The real-time and alarm clock support routines are defined
 in sysRtc.c.

 The real-time clock can be set with a call to sysRtcSet(). The
 following information needs to be supplied in order to set the
 RTC: century, year, month, day of month, day of week, hour,
 minute, and second. The current RTC settings can be retrieved with
 a call to sysRtcGet(). The current RTC date and time can be
 displayed with a call to sysRtcShow(). The sysRtcDateTimeHook()
 routine is provided as a hook to the vxWorks dosFsLib as a means
 of providing the date and time for file timestamps.

 The alarm clock can be programmed in the following five ways:

 Method Configurable Parameters
 --
 Once a month Date, hour, minute, second
 Once a day Hour, minute, second
 Once an hour Minute, second
 Once a minute Second
 Once a second (none)

Page 11 of 16Motorola Computer Group Online Services

10/13/2003http://mcg.motorola.com/secure/oem/OnlineServices.cfm?PageID=46&ProductFamily=MVME5500&FileName=mvme5500.html&...

 The alarm clock is set with a call to sysAlarmSet(). This routine
 takes a method and the alarm clock parameters as arguments. The
 alarm clock can be cancelled with a call to sysAlarmCancel(). The
 current alarm clock settings can be retrieved with a call to
 sysAlarmGet(). The current alarm clock settings can be displayed
 with a call to sysAlarmShow(). The routine sysAlarmIntr() is the
 alarm clock interrupt handler. In order to define your own
 interrupt handler, simply edit this routine.

PCI Access

 The 64-bit PCI/PCI-X busses are fully supported under the PCI
 Local Bus Specification, Revision 2.1. All configuration space
 accesses are made with BDF (bus number, device number, function
 number) format calls in the pciConfigLib module. For more
 information, refer to the man pages.

Boot Devices

 The supported boot devices are:

 sm - shared memory (not supported in this release)
 gei0 - Primary Ethernet (10baseT, 100baseTX, or 1000baseT)
 wancom0 - Additional Ethernet (10baseT or 100baseTX)
 scsi - SCSI

Boot Methods

 The boot methods are affected by the boot parameters. If no
 password is specified, RSH (remote shell) protocol is used. If a
 password is specified, FTP protocol is used, or, if the flag is
 set, TFTP protocol is used.

 These protocols are used for both Ethernet and shared memory boot
 devices.

ROM Considerations

 Use the following command sequence on the host to re-make the BSP
 bootrom file:

 cd target/config/mv5500
 make clean
 make bootrom
 elfToBin boot.bin
 chmod 666 boot.bin
 cp boot.bin /tftpboot/boot.bin

 Power down the board and switch ROM jumper J8 to select MOTLoad
 which normally resides in flash1 (bank B). Connect the Ethernet
 and console serial port cables, then power the board back up.

Flashing the Boot ROM Using Motorola MOTLoad:

 First set some MOTLoad global variables to conform to your
 particular operational environment. This is done via a series of
 gevEdit commands: These variables, when set, remain in NVRAM
 through power cycles and can later be changed, if desired, with
 MOTLoad gevDelete and gevEdit commands.

 MVME5500> gevEdit mot-/dev/enet1-cipa
 (Blank line terminates input.)
 123.111.32.90

 Update Global Environment Area of NVRAM (Y/N)? y

 MVME5500> gevEdit mot-/dev/enet1-sipa
 (Blank line terminates input.)
 123.111.32.180

 Update Global Environment Area of NVRAM (Y/N)? y

 MVME5500> gevEdit mot-/dev/enet1-gipa
 (Blank line terminates input.)
 123.111.32.1

 Update Global Environment Area of NVRAM (Y/N)? y

Page 12 of 16Motorola Computer Group Online Services

10/13/2003http://mcg.motorola.com/secure/oem/OnlineServices.cfm?PageID=46&ProductFamily=MVME5500&FileName=mvme5500.html&...

 MVME5500> gevEdit mot-/dev/enet1-file
 (Blank line terminates input.)
 mydir/boot.bin

 Update Global Environment Area of NVRAM (Y/N)? y
 MVME5500>

 The above sequence sets the client IP address (IP address of the
 MVME5500) to 123.111.32.90, the IP address of the server to
 123.111.32.180, the IP address of the gateway to 123.111.32.1 and
 the tftp file name to "mydir/boot.bin". Note that we have used
 "dev/enet1" as the ethernet device involved in the download. You
 can use another device, such as "dev/enet0" if you wish, use of
 the netShow command will display which interfaces are "up" and
 available for use in the download operation.

 The file is transferred from the TFTP host to the target board
 using the tftpGet command. IMPORTANT: You must have a TFTP server
 running on your host's subnet for the tftpGet command to succeed.
 The file name must be set to the location of the binary file on
 the TFTP host. The binary file must be stored in the directory
 identified for TFTP accesses, but the file name is a relative path
 and does not include the /tftpboot directory name:

 Now that the MOTLoad global variables have been set into NVRAM,
 you can perform the tftp load of the file image with the following
 command:

 MVME5500>tftpGet -d/dev/enet1

 Notice that we have specified "/dev/enet1" as the interface. This
 is the same interface that was specified with the gevEdit command.
 If no interface is specified on the tftpGet command line, MOTLoad
 defaults to "dev/enet0". Also take note that you can override the
 NVRAM settings previously set via the gevEdit command by
 specifying additional MOTLoad options on the tftpGet command line.
 The "-c" option can override the client IP address, the "-s"
 option can override the server IP address, the "-g" option can
 override the gateway IP address, and the "-f" option can override
 the file name.

 After the file is loaded onto the target, the flashProgram command
 is used to put it into soldered FLASH parts (flash0 or bank A).
 Before using the flashProgram command you must first determine
 which flash bank to specify (-d option) and the offset (-o
 option). To do this, first run the flashShow MOTLoad command:

 MVME5500I> flashShow
 Device-Name Base-Address,Size Device-Size,Count Boot Type
 /dev/flash0 F2000000,02000000 01000000,00000002 No Intel 28F128
 /dev/flash1 FF800000,00800000 00400000,00000002 Yes Intel 28F320
 MVME5500I>

 The above display shows that the MOTLoad was booted from the
 "/dev/flash1" (socketed) bank because the word "Yes" appears under
 the "Boot" column. Thus the other bank, namely "/dev/flash0"
 (labeled "No" under the "Boot" column) is available for flashing
 the VxWorks bootrom. The offset "-o" option parameter is computed
 in the following way:

 offset_value = size - 0xfff00

 Where "size" is 0x02000000 (taken from the "/dev/flash0" "Size"
 column. The value 0xfff00 is always the value used in flashing a
 VxWorks bootrom image. It represents 1MB minus a 0x100 offset
 designed to align the beginning of the image being flashed with
 the powerPC reset vector at 0xfff00100. Performing this
 computation yields:

 offset_value = 0x02000000 - 0xfff00 = 0x01f00100

 The flashProgram command becomes:

 flashProgram -d/dev/flash0 -o01f00100 -nfff00

 Because we are dealing with "/dev/flash0" which is the MOTLoad
 default for this command we could leave the "-d" option off but it
 does not hurt to include it.

 Be aware that if MOTLoad is running from soldered flash
 ("/dev/flash0") and we wish to flash the VxWorks bootrom into the

Page 13 of 16Motorola Computer Group Online Services

10/13/2003http://mcg.motorola.com/secure/oem/OnlineServices.cfm?PageID=46&ProductFamily=MVME5500&FileName=mvme5500.html&...

 "/dev/flash1" the calculation for offset would be:

 offset_flash1 = 0x00800000 - 0xfff00 = 0x700100

 And the command would be:

 flashProgram -d/dev/flash1 -o00700100 -nfff00

IMPORTANT

 DO NOT use the flashProgram command to flash into the bank labeled
 "Yes" by the flashShow command. Doing so will destroy the MOTLoad
 firmware image.

 When the flashProgram command is finished, power down the board
 and switch ROM jumper J8 to select soldered FLASH (flash0 or bank
 A) by placing the jumper across pins 1 and 2). Power the board
 back up. The VxWorks boot image which you just flashed will be in
 control.

SPECIAL CONSIDERATIONS

 The rom resident images, bootrom_res_high, vxWorks.res_rom_res_low
 and vxWorks.res_rom_nosym_res_low mentioned in the section Make
 Targets do not work with the elfToBin tool released with Tornado
 2.0. A modified version of elfToBin has to be used in order to get
 these images working. Please refer to SPR #8845 for a new version
 of elfToBin.

Known Problems

 The following problems are known to exist with the BSP. Wind River
 has been notified of these problems.

 When through the shared memory inteface, the following warning
 message sequence appears. There are no lasting ill effects from
 this message, shared memory functions properly:

 Attached TCP/IP interface to fei unit 0
 Attaching network interface lo0... done.
 Initializing backplane net with anchor at 0x4100... done.
 Backplane anchor at 0x4100... Attaching network interface sm0... done.
 Unable to add route to 144.191.0.0; errno = 0xffffffff.

 When using the IPMC module, it is not possible to boot the kernel
 from the SCSI drive unless the following modifications are made to
 "../all/bootConfig.c":

 In the scsiLoad() routine remove the following section of code:

 pCbio = dpartDevCreate((CBIO_DEV_ID) pScsiBlkBootDev,
 NUM_PARTITIONS_DISK_BOOT,
 usrFdiskPartRead);

 if (NULL == pCbio)
 {
 printErr ("scsiLoad: dpartDevCreate returned NULL.\n");
 return (ERROR);
 }

 /* initialize the boot block device as a dosFs device named */

 if (ERROR == dosFsDevCreate(bootDir,
 dpartPartGet(pCbio,PARTITION_DISK_BOOT),
 20, NONE))
 {
 printErr ("scsiLoad: dosFsDevCreate returned ERROR.\n");
 return (ERROR);
 }

 And replace it with:

 if (dosFsDevInit (bootDir, pScsiBlkBootDev, NULL) == NULL)
 {
 printErr ("dosFsDevInit failed.\n");
 return (ERROR);
 }

Delivered Objects

 The delivered objects are: bootrom, vxWorks, vxWorks.sym, and
 vxWorks.st.

Page 14 of 16Motorola Computer Group Online Services

10/13/2003http://mcg.motorola.com/secure/oem/OnlineServices.cfm?PageID=46&ProductFamily=MVME5500&FileName=mvme5500.html&...

Make Targets

 The make targets are listed as the names of object-format files.
 Append .hex to each to derive a hex-format file name.

 bootrom
 bootrom_uncmp
 bootrom_res_high (bootrom_res does not build)
 vxWorks (with vxWorks.sym)
 vxWorks_rom
 vxWorks.st
 vxWorks.st_rom
 vxWorks.res_rom_res_low (vxWorks.res_rom does not build)
 vxWorks.res_rom_nosym_res_low (vxWorks.res_rom_nosym does not build)

Special Routines

BOARD LAYOUT

 The diagrams below show flash EEPROM locations and jumpers
 relevant to VxWorks configuration:

 -- MVME5500
 \ ___
 | | |
 / | J27 J8 -==
 ---| || || -==
 | || || -==
 | || || -==
 | || || -==
 | || || -==
 | || || -==
 | || || -==
 | PMC || || -==
 | Connector -==
 | || || -==
 | || || -==
 | || || -==
 | || || -==
 | +-----+ +-----+ || || -==
 | | | | | || || -==
 | | XU2 | | XU1 | || || -==
 | | | | | || || -==
 | +-----+ +-----+ -==
 | J8 J10 J17 -==
 | ROM Jumper || || | | |
 | 1 3 || || |
 | || || |
 | || || |
 | || || |
 | || || |
 | || || || |
 | || PMC || || |
 | || Connector |
 | || || || |
 | Memory || || || |
 | Mezzanine || || || . |
 | Connector || || || . |
 | || || || .<--J32
 | || || || |
 | || || || -==
 | || || || -==
 | -==
 | -==
 | J19 -==
 | -==
 | -==
 |- -==
 | -==
 GigE |
 |- -==
 |- -==
 10/100 | -==
 BaseT | -==
 |- -==
 |- -==
 | -==
 COM0 | .1 -==
 |- J28 . -==
 ---| .3 -==
 \ | |

Page 15 of 16Motorola Computer Group Online Services

10/13/2003http://mcg.motorola.com/secure/oem/OnlineServices.cfm?PageID=46&ProductFamily=MVME5500&FileName=mvme5500.html&...

 | |___
 / /

SEE ALSO

 Tornado User's Guide: Getting Started

 VxWorks Programmer's Guide: Configuration

BIBLIOGRAPHY

 Motorola Computer Group Online Documentation

 Motorola Engineering Specification and Programming Model for
 MVME5500

 Motorola PowerPC 60X RISC Microprocessor User's Manual

 Motorola PowerPC Microprocessor Family: The Programming
 Environments

 IEEE P1386.1 Draft 2.0 - PCI Mezzanine Card Specification (PMC)

 IEEE P1386 Draft 2.0 - Common Mezzanine Card Specification (CMC)

 Motorola MPC7450 RISC Microprocessor Family User's Manual Rev 2,

 Marvell GT-64260A/B System Controller for PowerPC Processors
 Manual Rev 1.1,

 Peripheral Component Interconnect (PCI) Local Bus Specification,
 Rev 2.1

Downloads

Filename Description
MVME5500_0.3.tar.gz MVME5500
MVME5500_0.4.tar.gz MVME5500 VxWorks BSP (1.2/0.4)

© Copyright 1994 -2003 Motorola, Inc. All Rights Reserved.
Terms of Use | Privacy Practices | Contact Us

Page 16 of 16Motorola Computer Group Online Services

10/13/2003http://mcg.motorola.com/secure/oem/OnlineServices.cfm?PageID=46&ProductFamily=MVME5500&FileName=mvme5500.html&...

